Unit 4 - Lesson 18
Graphing Lines in Slope-Intercept Form

Name:
Date: \qquad Period: \qquad

Focus Standards:	8.EE.B.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
	$8 . E E . B .6$	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation for a line through the origin and the equation for a line intercepting the vertical axis at .

Student Outcomes

- Students graph equations in the form of $y=m x+b$ using information about slope and y intercept.
- Students know that if they have two straight lines with the same slope and a common point, the lines are the same.

Opening Exercise

Examine each of the graphs and their equations below. Identify the coordinates of the point where the line intersects the y-axis. Describe the relationship between the point and the equation $y=m x+b$.
a. $y=\frac{1}{2} x+3$

b. $y=-3 x+7$

Example 1

Graph the equation $y=\frac{2}{a} x+1$. Name the slope and y-intercept.

Example 2

Graph the equation $y=-\frac{a}{4} x-2$. Name the slope and y-intercept.

Example 3

Graph the equation $y=4 x-7$. Name the slope and y-intercept.

Exercises

1. Graph the equation $y=\frac{5}{2} x-4$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

2. Graph the equation $y=-3 x+6$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

3. The equation $y=1 x+0$ can be simplified to $y=x$. Graph the equation $y=x$.
a. Name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

4. Graph the point $(0,2)$.

a. Find another point on the graph using the slope, $m=\frac{2}{7}$.
b. Connect the points to make the line.
c. Draw a different line that goes through the point $(0,2)$ with slope $m=\frac{2}{7}$. What do you notice?
5. A bank put $\$ 10$ into a savings account when you opened the account. Eight weeks later, you have a total of $\$ 24$. Assume you saved the same amount every week.
a. If y is the total amount of money in the savings account and x represents the number of weeks, write an equation in the form $y=m x+b$ that describes the situation.
b. Identify the slope and the y-intercept. What do these numbers represent?
c. Graph the equation on a coordinate plane.

d. Could any other line represent this situation? For example, could a line through point $(0,10)$ with slope $\frac{7}{5}$ represent the amount of money you save each week? Explain.
6. A group of friends are on a road trip. So far, they have driven 120 miles. They continue their trip and drive at a constant rate of 50 miles per hour.
a. Let y represent the total distance traveled in x hours. Write an equation to represent the total number of miles driven in x hours.
b. Identify the slope and the y-intercept. What do these numbers represent?
c. Graph the equation on a coordinate plane.
d. Could any other line represent this situation? For example, could a line through point $(0,120)$ with slope 75 represent the total distance the friends drive? Explain.

Problem Set

Graph each equation on a separate pair of x - and y-axes.
For each problem,
a. name the slope and the y-intercept.
b. Graph the known point, and then use the slope to find a second point before drawing the line.

1. Graph the equation $y=\frac{4}{5} x-5$. slope: \qquad y-intercept: \qquad
2. Graph the equation $y=x+3$. slope: \qquad y-intercept: \qquad
3. Graph the equation $y=-\frac{4}{a} x+4$. slope: \qquad y-intercept: \qquad
4. Graph the equation $y=\frac{5}{2} x$. \quad slope: \qquad y-intercept: \qquad
5. Graph the equation $y=2 x-6$. slope: \qquad y-intercept: \qquad
6. Graph the equation $y=-5 x+9$. slope: \qquad y-intercept: \qquad
7. Graph the equation $y=\frac{1}{a} x+1$. slope: \qquad y-intercept: \qquad
8. Graph the equation $5 x+4 y=8$. (Hint: Transform the equation so that it is of the form $y=m x+b$.) slope: \qquad y-intercept: \qquad
9. Graph the equation $-2 x+5 y=30$. slope: \qquad y-intercept: \qquad
